5. Verkettung von Funktionen : f(x) = ln(g(x))

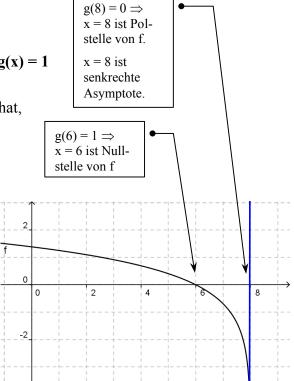
Die Eigenschaften von f folgen aus den Eigenschaften der inneren Funktion g:

- Maximale Definitionsmenge D_{max} Weil die Definitionsmenge des Logarithmus $\mathbb{R}^+ \setminus \{0\}$ ist, muss gelten: g(x) > 0
- Verhalten an den Rändern des Definitionsbereiches:

für $g(x) \to \infty$ gilt auch: $f(x) \to \infty$ für $g(x) \to 0$ gilt: $f(x) \to -\infty$

für $g(x) \rightarrow c$ gilt: $f(x) \rightarrow ln(c)$; $c \in \mathbb{R}^+$

- <u>Nullstellen:</u>
 Die Nullstellen von f sind diejenigen, für die gilt: g(x) = 1
- HOP und TIP f(x) hat dort HOP/TIP, wo auch g seine HOP/TIP hat, sofern sie in D_{max} liegen.



Beispiel:

 $f_1(x) = \ln(4 - 0.5x)$; g(x) = 4 - 0.5x

- $4 0.5x > 0 \Leftrightarrow x < 8 \Rightarrow D =]-\infty$; 8[
- für $x \to -\infty$: $g(x) \to \infty \Rightarrow f(x) \to \infty$ für $x \to 8$: $g(x) \to 0 \Rightarrow f(x) \to -\infty$; Senkrechte Asymptote bei x = 8
- $4 0.5x = 1 \Leftrightarrow x = 6 \Rightarrow N(6|0)$ Der Abstand zur senkrechten Asymptote ist 2, da f_1 einer um 2 gestauchten, um 2 nach links verschobenen ln-Funktion entspricht, die wegen -0.5(...) an der y-Achse gespiegelt ist: $f_1(x) = \ln(-0.5(x+2))$

Aufgabe 1

Der Graph der innere Funktion g(x) ist eine Parabel, die durch die Punkte A(-5|-9), B(-3|-5) und C(9|-2) verläuft.

- 1.1 Bestimmen Sie den Funktionsterm von g. (Zwerg: $g(x) = -\frac{1}{8}x^2 + x \frac{7}{8}$)
- 1.2 Berechnen Sie die Koordinaten des Scheitels und zeichnen Sie den Graphen G_g für $x \in [0;8]$ in ein Koordinatensystem.
- 1.3 Ermitteln Sie die Eigenschaften von f = ln(g) und skizzieren Sie damit G_f . Bestimmen Sie die Wertemenge W_f von f.

Aufgabe 2

Skizzieren Sie den Graphen von ln(g(x)).

